
NASA Technical Paper 3452
Volume 3

HiRel: Hybrid Automated Reliability Predictor
(HARP) Integrated Reliability Tool System
(Version 7.0)

HARP Graphics Oriented (GO) Input User's Guide

Salvatore J. Bavuso

Langley Research Center • Hampton, Virginia

Elizabeth Rothmann and Nitin Mittal

Duke University • Durham, North Carolina

Sandra Howell Koppen

Lockheed Engineering & Sciences Company • Hampton, Virginia

National Aeronautics and Space Administration
Langley Research Center • Hampton, Virginia 23681-0001

November 1994

This publication is available from the following sources:

NASA Center for AeroSpace Information

800 Elkridge Landing Road

Linthicum Heights, MD 21090-2934

(301) 621-0390

National Technical Information Service (NTIS)

5285 Port Royal Road

Springfield, VA 22161-2171

(703) 487-4650

4.13. REDRW 22

4.14. SCALE 24

4.15. VIEW 24

Chapter 5--Output Files 27

Appendix--Hardware and Software Configurations 29

References 34

iv

Contents
Chapter 1--Introduction 1

Chapter 2--Program Initiation and Example Session 3

2.1. Scrolls 4

2.2. Example Session 5

2.2.1. Model Input 5

2.2.2. Sample Session 5

Chapter 3--Graphics Primitives 9

3.1. Markov Chain Primitives 9

3.1.1. Circle 9

3.1.2. Clockwise and Counterclockwise Arc 9

3.1.3. Arrow 10

3.2. Fault Tree Primitives 10

3.2.1. Circle 10

3.2.2. Double Circle 10

3.2.3. or Gate 11

3.2.4. xor Gate 12

3.2.5. not Gate 12

3.2.6. and Gate 12

3.2.7. m/n Gate 12

3.2.8. Functional Dependency Gate 12

3.2.9. Priority and Gate 12

3.2.10. Cold Spare Gate 12

3.2.11. Sequence-Enforcing Gate 13

3.2.12. Box 13

3.2.13. Failure Box 13

3.2.14. Line 13

Chapter 4--Function Keys 14

4.1. HELP 14

4.2. LOAD 15

4.3. DRAW 15

4.4. DICT 16

4.5. LABEL 17

4.6. SAVE 18

4.7. QUIT 19

4.8. COPY 19

4.9. DEL 19

4.10. ERASE 22

4.11. GRID 22

4.12. MOVE 22

ooo

Ill

PAC_ ut.Ar_ NOT FtLr_:_)

Chapter 1

Introduction

The Hybrid Automated Reliability Predictor (HARP) integrated Reliability (HiRel) work-

station tool system marks another accomplishment toward the goal of producing a totally

integrated computer-aided design (CAD) workstation design capability (ref. 1). Since a reliability
engineer must generally graphically represent a reliability model before solving it, the use of a

graphical input description language increases productivity and decreases the incidence of error.

The captured image displayed on a cathode-ray tube (CRT) screen serves as a documented

copy of the model and provides the data for automatic input to the HARP reliability model
solver. The introduction of dependency gates to fault tree notation allows large fault-tolerant

system models to be modeled with a concise and visually recognizable and familiar graphical

language. In addition to aiding in the verification of the reliability model, the concise graphical

representation presents company management, regulatory agencies, and customers a means of

expressing a complex model that is readily understandable.

The HARP program (ref. 2) consists of three main software programs that constitute a
workstation capability: the graphics oriented (GO) program (ref. 3), the textual HARP program

typically referred to as HARP or textual HARP, and the HARP Output (HARPO) program.
All these programs execute on a VAX under VMS, SUN under UNIX, and IBM-compatible

286, 386, and 486 PC's under DOS. Textual HARP also executes under OS/2. The graphical

input and output programs require the Graphical Kernal System (GKS) support modules with C
and FORTRAN compilers, while textual HARP only requires an ANSI standard FORTRAN 77

compiler. All three programs are stand-alone programs that operate on compatible files. For
example, files created under the PC environment can be executed by a VAX. In this way, a
PC can be used as a workstation for input and output processing, while a VAX or some other

workstation can be used for large computations.

Textual HARP when used as a stand-alone capability is compatible with a wide range of

computing platforms because it was written in ANSI standard FORTRAN 77 for wide portability.
Textual HARP has an interactive prompting input capability and is composed of three stand-

alone programs: tdrive, fiface, and harpeng. As the user successively executes the programs
in this order, files are created that are required by downstream programs. The programs also

accept user-generated files created with a text editor. Thus, the user has the option to use the

interactive capability or simply input the user-generated files.

The input to tdrive can also come from files generated by GO. The output of textual HARP
is in the format of tabular structured files. These files can be used by HARPO to display the

HARP tabular data in a wide variety of forms in an interactive mode.

The HARP Graphics Oriented (GO) program is the graphical user interface (GUI) to the

HARP (ref. 2) program which is a member of the HiRel tool system. (See vols. 1 and 2 of this

TP.) The GO program creates all required files that describe the user's reliability/availability
models and provides an alternate input format to HARP's textual input language. The ASCII
files can be modified with a text editor for additional flexibility. Before using the GO program,

the user should understand the following HARP concepts: the fault-occurrence/repair model

(FORM), fault/error handling model (FEHM), and the function of the HARP dictionary.

The GO program supports the creation of Markov chain models in two notations: directly

as a Markov chain and indirectly as a fault tree. When a model is described as a fault tree, the

programtdrive automatically converts the fault tree to its equivalent Markov chain for solution.

A Markov chain is solved directly if no FEHM's are specified; otherwise, for both notations the

model's Markov chain is automatically altered to include the effects of user-specified fault/error

handling. The model that is eventually solved by HARP is always a Markov chain.

The choice of which modeling language to use depends on several factors, such as the size of
the model, the user's familiarity with a particular notation, and the degree of modeling detail

desired. These factors are highly user dependent; however, for all but the most simple models

(less than 50 states), the fault tree notation is by far the easiest to describe and comprehend.

An important limitation of the fault tree notation is its inability to model systems with repair;

however, there is no limitation for Markov chains. Thus, describing a repair model as a fault
tree initially to automatically create its Markov chain may be possible. With a text editor, the

*.int file can be subsequently altered to reflect the required repair transitions and repair rates.

Direct input of a Markov chain will appropriately model systems with repair.

This document describes the GO program. Chapter 2 provides information on how to run

the graphics program and gives an example session. Chapter 3 provides details about fault tree

and Markov chain icons available for modeling, and chapter 4 describes the use for each function

key. Chapter 5 gives detailed information about the output files GO created for input HARP.

The appendix describes the hardware and software requirements for each computing platform.

Chapter 2

Program Initiation and Example
Session

The initiation of the GO program may differ slightly on each computing platform. On a

Sun Microsystems Sun 3 workstation, the Sunview environment must be invoked first. GO also
executes on Sun 4 workstations under Sun OpenWindows. DEC VAX workstations also require

a window environment.

On an IBM-compatible PC, if the GO program is in the path statement in autoexec.bat,

typing go at the C prompt invokes the fault tree menus and gore invokes the Markov chain

menus. The appendix provides the details.

To initiate the program on a Sun or VAX workstation, type the word go on your terminal,

which gives you the default FORM of a fault tree. (You can also type go f.) If you want to
create a Markov chain, type go m. (See appendix for parameter passing under the software

requirements section.) You cannot switch back and forth between the two FORM types during

program execution.

Your workstation requires a few seconds to set up the menus and screen. The first screen

that appears is the credits screen. Pressing the left mouse button clears the screen for model

entry. Your screen should then look like figure 1.

MESSAGES GO HERE

Fault tree

or

Markov chain

primitive menu

(see chapter 5)

Figure 1. Initial drawing screen.

The drawing window is the large square to the left of the screen. In the middle of each edge of

the drawing window is a small box with an arrow key. These SCROLL boxes allow you to scroll

the picture up, down, left, or right. Directly below the drawing window is the message window

÷

Scroll up

Scroll left + Scroll right -_

Scroll down

MESSAGES GO HERE

QUIT

LABEL

DIET

ERASE

DRAW

HELP

SAVE

COPY

RI_RW

DEL

Fault tree

or

Markov chain

primitive menu

(see chapter 5)

SCALE

LOAD

VIEW

MOVE

GRID

Figure 2. Screen scrolling buttons.

(MESSAGES GO HERE). User information, instructions, warnings, or error messages are displayed

here. To the right of the drawing window is the menu area that includes the menu icons and

the graphic primitive icons. The 15 menu icons shown have various function names, that is,

QUIT, HELP, SCALE, etc. These menu icons are referenced herein as function keys. When the

instructions call for you to use a particular function key, you should move the cursor over that

icon with the mouse and press and release the left button on the mouse (tagging and dragging

are not implemented). The graphic primitive icons are located below the function keys. If the

FORM is a fault tree, there are eight function keys. If the FORM is a Markov Chain, there are

four function keys. These icons are discussed in chapter 4.

The cursor is centered in the drawing window. Use the mouse to move the cursor in the

direction desired. To make a selection, press the left mouse button while the cursor is over the

selected area.

Keyboard input is not case sensitive, even though GO prompts may indicate otherwise. GO

generated filenames are always uppercase but can be input as lowercase. GO executing on a

Sun requires the user to select the keyboard input panel with the left mouse button. The panel

is located below the message window.

2.1. Scrolls

The scroll buttons are located along each side of the main drawing window. (See fig. 2.)

Anytime you want to scroll to a different screen, either to create a model or to view it, move

the cursor over the correct box and press and release the left mouse button. To scroll a quarter

screen, press and release the mouse button once. A number is written in the appropriate box

representing the number of whole screens that have been scrolled in that direction. This scheme

makes returning to the home location easy. For example, if the screen has been moved two

screens to the right, returning to home can be accomplished by pressing and releasing the mouse

button eight times in quick succession.

2.2. Example Session

2.2.1. Model Input

To input a model in the GO program, perform the following steps:

1. Invoke GO by entering go or go f for inputting fault trees or go m for Markov chains. On a
PC, the parameter f or m must be passed to the GO program. You must use a batch file,

for example, go.bat or gom.bat, to pass the parameters to pcgo.exe and to invoke the GKS

drivers. (See appendix under the section for PC software requirements.)

2. Clear the credits screen by pressing and releasing the left mouse button.

3. At any time when the menu is displayed, selecting HELP with the mouse displays context
sensitive information. Menus are selected by moving the mouse to place the cursor over the

menu item and pressing and releasing the left mouse button. To get help on drawing, select
HELP then select DRAW from the menu. Selecting HELP then QUIT terminates help.

4. If this is an initial session, begin by selecting DRAW from the menu with the mouse (see

chapter 4 for options). If this is a continuation of a previous session, then select LOAD from
the menu.

5. After the primitives are displayed and before labeling the graph begins, you must create a

dictionary file if the model is a fault tree. You can create this file by selecting DICT. If
the model is a Markov chain without FEHM's (AS IS model) no dictionary is required. If

FEHM's are used, a dictionary is required.

6. Before labeling can begin, you must save the model by selecting SAVE. Labeling can then

proceed.

7. On completion of the model drawing, once again save the model before selecting QUIT. The

session ends when QUIT is invoked.

8. Processing of the model data continues by executing tdrive unless an AS IS Markov chain is
drawn. In this latter case, fiface is executed directly after GO termination. The programs

tdrive or fiface prompt you to read existing files. Then, tdrive or fiface reads the files that

GO created. These files (*.FTR and *.DIC for fault trees and *.MKV for Markov chains)
must be available to tdrive or fiface for reading. Processing now proceeds identically to that

of textual HARP. (See vol. 2 of this TP.)

2.2.2. Sample Session

After the credits screen is cleared (press the left mouse button), one of two screen images are

displayed. Figure 1 appears if go or go f was invoked or figure 3 appears with a blank drawing

window if go m was invoked. Since the more practical use of HiRel uses the fault tree notation,
this session concentrates on its use. Markov chains are easier to draw than fault trees, but they

become very large and untractable for most practical systems.

You can now select the context sensitive HELP screens by pointing the mouse cursor at

HELP and pressing and releasing the left mouse button followed by selecting the function key
of interest, for example, DRAW. Help is terminated by selecting QUIT. The purpose and use of

,1

LA..J

alTOW J

MESSAGES GO HERE

QUIT HELP SCALE

LABEL SAVE LOAD

DICT COPY VIEW

ERASE REDRW IvlOVE

DRAW

-©
DEL GRID

f--"h.
c-clockwise

clockwise

_--- counter

clockwise
arc

clockwise
arc

Figure 3. Markov chain primitive menu.

,q

IAI

¢-

line

MESSAGES GO HERE

f_lure
box

circle

Figure 4. Default fault tree primitive menu.

6

all function keys except DRAW is straightforward. To demonstrate the drawing function, begin

by selecting DRAW after terminating help.

The DRAW function key is now surrounded by a red border designating the selected function.

Next point to the the function key to be placed on the screen. Figure 4 shows the fault tree that

is currently being described. The order of selecting and placing the function keys is arbitrary
with one exception, the line. Lines should be drawn last. To place the FBOX, place the cursor

in the FBOX function key and press and release the left mouse button. Move the cursor to the

desired position and press and release the left mouse button. The FBOX function key appears
on the screen. Continue this process for all functions required. You need not select DRAW for

each new function key in the primitive menu. The Circle function keys are empty when initially

drawn. To draw lines, select line and select the source, then move the cursor to the destination
and select it. Connect lines from the bottom of the screen upward. Figure 5 shows the second

primitive menu that is obtained by pointing to the primitive menu and pressing and releasing

the right mouse button. This menu is a toggle switch; thus, repeating the operation restores the
initial menu.

IAI
QUIT HELP SCALE

LABEL SAVE LOAD

DICT COPY VIEW

t _ ERASE REDRW MOVE

DRAW DEL GRID

circle_

functional

dependency
gate

line

r-7-1
MESSAGES GO HERE

sequence enforcing gate _/

--©

k lll cH
f

xor gate
priority

and gate Second

_--- coldgatespare/ pnmt_t w e

not

gate

Figure 5. Second fault tree primitive menu.

The dictionary should be created next by selecting DICT. GO prompts you for the required

information: the names of the system components, a symbolic failure rate name, and a FEHM

model. GO assigns a unique positive integer to each component that is used later during the

labeling of the basic event function keys.

When the dictionary is complete, the model needs to be temporarily saved. Use the SAVE

function key to do that. When specifying the filename for the model, do not use a file extension.
GO attaches an appropriate one for you. Now labeling can begin. When LABEL is selected,

7

GOplacesthedictionaryintegerassociatedwith eachcomponentbasiceventin a circlefunction
key. GO asksyou for a replicationfactor, a positiveinteger. In figure4, a replicationfactor
of 3wasgivenfor component1 anda replicationfactorof 2 wasgivenfor component2. Unlike
textualHARP,youdonot needto keeptrack of nodenumbers.GOdoesthat bookkeepingfor
you.

At anytime during the drawingoperation,GRID, SCALE,SAVE,VIEW, REDRW,DEL,
HELP, COPY, MOVE, and evenQUIT or ERASE,can be selected.REDRW is usefulfor
cleaningup the screenwhenmucheditinghasbeendone.ERASEterminatesthe drawingbut
not thesession.QUIT doesboth. In eachcase,youarewarnedof yourrequestedactionbefore
it is executed.Typically,SAVEis selectedbeforequitting. QUIT doesnot saveautomatically
for you.

When the sessionis terminated,you shouldexecutethe tdrive program to continue the

analysis. Then tdrive prompts you to enter the modelname of the system you drew. The

analysis is now in the HARP environment and stays there until the HARPO program is invoked
after harpeng is executed.

8

Chapter 3

Graphics Primitives

3.1. Markov Chain Primitives

Markov chains are stochastic mathematical models that constitute a superset of combinatorial

fault tree models. Markov chains are particularly useful for modeling systems that contain

various dependencies not easily modeled or at all possible with combinatorial fault trees.

In contrast to combinatorial models, the solution of Markov chains is computationally more

expensive. However, for many applications involving fault trees, the additional computer time is

trivial compared with the benefits of the fault tree notation. When fault/error handling modeling
is required, a Markov chain is often the only reasonable choice. The HiRel capability makes the

choice of selecting a modeling notation much easier because the HARP program converts a fault
tree into a Markov chain even when failure dependencies and fault/error handling are modeled.

(See vol. 1 of this TP.)

Four graphics primitives are used to create a Markov chain: circle (representing a system

state and also called a node), arrow, clockwise arc, and counterclockwise arc (representing state

transitions). The connectors (arcs or arrows) must go from a node to a node. HARP can solve

repairable systems; thus, no restrictions exist on having a connector going from node A to node B

and another going from node B to node A. For clarity on the screen, you should not make both
of these arrows because they will overwrite one another. Use the arcs primitives because they

are curved rather than straight.

3.1.1. Circle

A circle represents a state in the Markov chain. To add (or delete) circles to your model (once

you have used both the DRAW (or DEL) and the CIRCLE function keys), move the cursor to
the desired location in the drawing window and press the left mouse button. When labeling the

states, a parameter of 13 characters containing numerals or characters is allowed. If two nodes

have the identical label, they are considered to be the same state. (This condition applies only
if there are labels. Null states, states without labels, cannot be used in the remainder of the

HARP program.)

3.1.2. Clockwise and Counterclockwise Arc

As the name implies, the clockwise arc is drawn clockwise from the head node to the tail
node. Once the CLOCKWISE ARC function key has been highlighted, you should first specify

the tail node from which the arc emanates and then specify the head node to which the arc goes.

To specify a node, move the cursor anywhere within the node and press the left mouse button.

You are given an error message if either node cannot be found. If the desired direction of the
arc is counterclockwise, use the arc function key that shows the arc going in a counterclockwise
direction with the word c-clockwise in the box. The tail node is again designated first and the

head node second. However, the arc is drawn in a counterclockwise motion. While arcs look
different on the screen than arrows (arcs are curved and arrows axe straight), the arc is not

interpreted any differently than the arrow during the run of the HARP engine. Arcs are useful
for modeling repair transitions. Labels of up to 24 characters can be entered with the following
restrictions:

1. Onlyonelevelof parentheses

2. Onlyadditionandsubtractionwithin parentheses

3. Onlyaddition,subtraction,andmultiplicationoutsideparentheses

3.1.3. Arrow

The arrow connects two states in the Markov chain. Like an arc, it must have both a valid

head and tail node to be entered. While it looks different on the screen (it is straight and

arcs are curved), the arrow is not interpreted any differently than the arc during the run of

the HARP engine. Arcs are used exclusively for repair transitions. After both the DRAW (or
DEL) function key and the ARROW function key have been specified, designate the tail node

by moving the cursor anywhere within it and press the left mouse button. Then, specify the

head node in the same manner. Labels of up to 24 characters can be entered with the following
restrictions:

1. Only one level of parentheses

2. Only addition and subtraction within parentheses

3. Only addition, subtraction, and multiplication outside parentheses

3.2. Fault Tree Primitives

The following 14 graphics primitives are used by the fault tree GO program: circle, or gate,

and gate, m/n gate, priority and gate, functional dependency gate, cold spare gate, sequence-
enforcing gate, double circle, box, failure box (FBOX), line, xor gate, and not gate. (All

primitives except line are also called nodes.) These primitives are divided into two menus,

as shown in figures 4 and 5. To view the second primitive menu, click the right mouse button.

This button works as a toggle from one menu to the other.

3.2.1. Circle

The circle represents a basic failure event in the fault tree. It can have no incoming lines.

To add (or delete) circles to your model (once you have enabled the DRAW (or DEL) and
the circle function keys), move the cursor to the desired location in the drawing menu and

press the left mouse button. When labeling the basic events, the dictionary file must exist.

The label is the number of the corresponding dictionary. For example, if dictionary entry 2
corresponds to actuators and this basic event is an actuator, then the label is 2. HARP allows

the combination of statistically identical components into single basic events. These replicated

basic events are labeled with an expression of the form m * n, representing m replications of

redundant, functionally identical components of type n. Therefore, you are asked how many

components are represented by this particular basic event circle. (See vol. 1 of this TP.)

3.2.2. Double Circle

The double circle function key is used to simplify the graphics display. The double circle

notation is provided for drawing convenience and to simplify the drawing by reducing connecting

arcs. In a model, two or more basic event nodes (circles) of the same component type represent
two or more distinct basic events. To represent a single basic event that is used more than once

in the fault tree (shared event or common mode/cause failure) use the double circle function
key. (See vol. 1 of this TP.) The shared basic event is initially drawn as a single circle. All

other multiple occurring events associated with the initial basic event are then drawn as double

10

circles.The double circles are referenced to the initial single-circle basic event during the labeling

process. When labeling commences, GO first prompts (red X) for the labels of all distinct basic
events, if they were drawn first. GO then marks the double circle (red X) and prompts for

the single-circle label corresponding to the double circle, etc. If a double circle is drawn before
its corresponding basic event, GO asks whether the basic event was previously defined. If the

answer is no and you respond accordingly, GO skips the double circle labeling and allows all
basic events to be labeled. You should then select the LABEL function key to label the double

circles.

When labeling the model, you are asked to identify the basic event node (circle) to which

the double circle corresponds. The *.TRE and *.FTR files are generated by the GO program

and represent the drawn model. The *.FTR or *.TRE files are read by program tdrive, which
causes all lines that emanated from the double circle to emanate from the corresponding basic

event. The double circle is removed from the internal data structure after the line connectors

have been switched. This primitive keeps the fault tree neat and easy to follow. When DELETE

and DOUBLE CIRCLE function keys are selected, GO warns you that all connecting arcs will

also be deleted. At some time during the drawing session, a double circle must be associated
with a basic event node. Also, a double circle must not be associated with other double circles.

The same reliability model can be obtained without the use of the double circles and can
be used as a check to insure that the double circle model is correctly drawn. Volume 1 of this

Technical Paper shows an example of a fault tree in figure 26. This figure is repeated in the

following sketch. A double circle implementation of the fault tree on the left can be visualized

by observing the fault tree on the right. Node 3 would be drawn as a double circle and hence

would be assigned as node 2 internally by GO. GO would call node 4 node 3, and all following
nodes would have a node value of one less than is depicted. All node numerals are internal to

GO and are not displayed. Only the component type numbers are displayed in the circles. The

disadvantage of not using the double circle drawing scheme is the need for displaying more arcs

than the double circle technique.

(
node 1

FBOX [node

ode 6

node 2

node 5

()
node 3

FBOX I node8

ode7

nodel node2 node3 node4

3.2.3. or Gate

The or gate can have both incoming and outgoing connectors. The output is true if at least

one input is true. For example, if an input is a basic failure event, then the or gate output is a

failure event. The or gates are not labeled.

11

3.2.4. xor Gate

The xor gate can have both incoming and outgoing connectors. The output is true if an odd
number of inputs is true. The xor gates are not labeled.

3.2.5. not Gate

The not gate has one incoming and one outgoing connector. The output is false when the
input is true. The not gates are not labeled.

3.2.6. and Gate

The and gate can have both incoming and outgoing connectors. The output is true if all

inputs are true. For example, if all inputs are basic failure events, then the and gate output is

a failure event. Also, and gates axe not labeled.

3.2.7. m/n Gate

The m/n gate can have both incoming and outgoing connectors. At least m out of the n events

must occur in order for the output of the gate to occur. Both m and n must be specified during

the labeling task.

3.2.8. Functional Dependency Gate

The functional dependency gate has one input (the trigger input), one or more dependent
outputs, and a normal output. The dependent outputs are basic events that depend on the

trigger event. When the trigger event occurs, the dependent basic events are forced to occur.

The normal output at the top of the gate reflects the status of the trigger event. To connect a

line from another primitive to the trigger event, point to the area near the tip of the FDEP gate
stub to the left of the gate and click the left mouse button. In the PC version, the cursor is a plus

(+) sign. Aim the center of the cursor at the stub's end and do not allow any part of the cursor

to touch the box. Doing so directs the connection away from the stub. To connect the dependent

events, click the left mouse button when the cursor is inside the functional dependency node.
The ordering of the displayed dependent events is unimportant as the trigger event causes all

dependent events to occur.

3.2.9. Priority and Gate

The priority and gate has both incoming and outgoing connectors. It is essentially an and gate

with two inputs with the added restriction that the input events have to occur in order. If the

two inputs are A and B, then the gate fires if both A and B occur and A occurs before B. When

drawing the two input lines, draw the left one first then the right one. Only one line entering
the gate is shown on the screen; thus, it is important to get the order of input correct the first

time. Verifying the order is impossible after they are drawn. ASCII files MODELNAME.FTR

or MODELNAME.TRE can be viewed for that information after quitting GO.

3.2.10. Cold Spare Gate

The cold spare gate has both incoming and outgoing connectors. It has one primary input

(the functional unit) and one or more secondary inputs (the cold spare units). The gate produces

an output when all input events (spare failures) have occurred. To connect the secondary inputs,
click the left mouse button on the line extending from the bottom of the node. To connect the

12

primaryevent,click the left mousebuttonwhenthe cursoris insidethe coldsparenode(larger
rectangle).GO orderscoldspareeventsbasedon the left-to-rightorderof the displayednodes
(sparebasiceventcircles)andNOTconnections.Althoughfigure3in volume1ofthis Technical
Papershowsthe incomingarcsasseparatearcs,GOimplementedtheconnectionsdifferently.A
separatearc is drawnfor theprimary unit, but only onearc is drawnfor the spareunits. Arcs
fromthesparebasiceventcircleswill mergeinto onestubenteringthecoldsparegateprimitive.
Sincethearcsmergeintoone,distinguishingtheorderof the incomingarcsisvisuallyimpossible.
Thus,the orderof the basiceventcirclesandnot the arcsis usedto determinetheorderof the
spareeventfailures.

3.2.11. Sequence-Enforcing Gate

The sequence-enforcing gate has more than one input connector and an output connector.

The input events are constrained to occur in the left-to-right order in which they appear under

the gate; that is, the leftmost event must occur before the event on its immediate right is allowed
to occur. The GO program orders the input events based on the relative locations of the circles

representing basic events and not on the order of incoming connectors (see the cold spare gate

explanation for this scheme). For the sequencing-enforcing gate, all inputs merge into one stub

that enters the primitive.

3.2.12. Box

A box node represents a subsystem tree output (a subsystem failure event) and is labeled by

text describing the subsystem (not yet implemented in the graphics or HARP packages). Boxes

are usually placed at the outputs of gates to serve as comments.

3.2.13. Failure Box

The failure box node (FBOX) represents system failure. It must be the top node of the fault
tree. If it is omitted, a warning is displayed when you save the file. The tdrive program will not

complete without this node present. Only one FBOX is allowed.

3.2.14. Line

The LINE function key connects two nodes (nonline primitives) in the fault tree. Lines must
be entered from the node lower in the tree to the higher one. A line cannot go between two

basic events; basic events can only be connected to other node types.

13

Chapter 4

Function Keys

4.1. HELP

Help prints out instructions on how to use the various function keys. To obtain information

on any function, first select the HELP key, and then select the function key designating the

desired information. (See fig. 6.) To exit the help session, use the QUIT function key. As an
example, suppose you want information on the GRID function key, then the COPY function,

and then you want to leave the HELP session. Perform the following steps:

1. Select the HELP key with the mouse

2. Select the GRID key with the mouse

3. Select the COPY key with the mouse

4. Select the QUIT key with the mouse

.q

h_n_3

YVq
MESSAGES GO HERE

QUIT

lABEL

DICT

SCALE

SAVE LOAD

COPY VIEW

ERASE RIK_W MOVE

DRAW DEL GRID

Fault tree

01"

Markov chain

primitive menu

Figure 6. Selecting HELP from the menu.

If you accidently selected DRAW or DEL first to get help and you do not want to draw a

primitive, select REDRW to abort DRAW. Now select HELP then DRAW, etc.

14

4.2. LOAD

If a model had been previously created and saved, select LOAD function key to restore the

model on the screen. (See fig. 7.) If this is a new session and a new model is to be drawn, skip

this command and proceed to DRAW.

,3

IAI

I]

MESSAGES GO HERE

QUIT HELP SCALE

LABEL SAVE

DICT COPY VIEW

ERASE

DRAW

REDRW MOVE

DEL GRID

Fault tree
or

Markov chain

primitive menu

Figure 7. Selecting LOAD from the menu.

LOAD reads a model into the data structure and displays it on the screen. When prompted

for the model name, type in the name with or without the extension. (If used, the extension

must be .TRE for a fault tree or .MKV for a Markov chain.) If another model was already in

the data structure, you are given the option of returning to it or using the new model. Once

you decide, the model not selected is removed from the data structure.

4.3. DRAW

The DRAW function key allows you to create a model or modify an existing model that was

invoked by the LOAD command. (See fig. 8.) To draw primitives in your model (e.g., a circle),

first select the DRAW function key by clicking the left mouse button and then select the graphics

primitive function key (CIRCLE) with the mouse using the same technique as before. Notice

that both the DRAW function key and the CIRCLE key are highlighted. If they are not, you

probably did not select the DRAW key first.

Once the primitive has been chosen, simply move the cursor into the drawing window and

place the cursor where you want the primitive to appear and press the left mouse button. The

primitives are copied (not dragged) into the drawing area. To enter more of the same primitive,

move the cursor in the drawing area and press the left mouse button--you do not need to select

15

IAI

V-q-q

MESSAGES GO HERE

QUIT

LABEL _

DICT

ERASE I

÷
(3

HELP

SAVE

COPY

_W

DEL

SCALE

:LOAD

VIEW

MOVE

GRID

c-clockwise

clockwise

Markov chain menu

Figure 8. Selecting DRAW from the menu.

QUIT HELP SCALE

LABEL SAVE LOAD

DICT COPY VIEW

ERASE RtK)RW MOVE

DR_ DEL GRID

I °xl ©
Fault tree menu

the primitive function key again. If you want to enter a different primitive, simply move the

cursor over that graphics primitive function key and press the left mouse button (the DRAW

function key remains selected). Then repeat this process in the drawing window. Until you

select one of the other main function keys, you can add as many different primitives to your
model as you like. If the DRAW function key is selected and you want to abort the selection

without selecting a primitive, select REDRW.

4.4. DICT

The DICT function key is used to enter the dictionary. (See vol. 1 of this TP for information

on the dictionary.) If the model type is a fault tree, the dictionary file must be created. To

create the dictionary, first select the DICT function key. (See fig. 9.) You are prompted for the
component type name, its failure rate, and the FEHM filename. Help is available by entering a

<CR> at the prompt. If the FEHM parameter file does not exist, you can create one for any of

the allowed HARP FEHM's. The ARIES, CARE, and ESPN models are displayed graphically
as well.

If you make an error anywhere in the current component description, you can return to the

beginning of that component description by selecting Escape <CR> for the PC DOS version and

selecting \ <CR> for the Sun and VAX VMS versions at any of the prompts. This action returns

you to the prompt for the component name. You cannot jump from one component description

to another. To change a previous description, the dictionary file *.dic must be edited, or the
entire dictionary file may be recreated. Once you have entered all the component information,

16

IAI

E

F-q-q
MESSAGES GO HERE

QUIT

l_AJ31t

-+
ERASE

HELP SCALE

SAVE LOAD

COPY VIEW

REDRW MOVE

DRAW DEL GRID

Fault tree
or

Markov chain

primitive menu

Figure 9. Selecting DICT from the menu.

type \, \d, or /d to terminate. If you have entered FEHM filenames other than NONE or

VALUES, you are also asked about the user-defined near-coincident fault rates.

The deletion of a basic event node using the DEL function key doesn't remove its entry from

the dictionary. No matter how many basic events are deleted, adding another dictionary item

proceeds from the last one entered. This scheme precludes the renumbering of the labels as well

as the dictionary entries each time a basic event is deleted. Unused dictionary entries do not

cause any problems with the program.

4.5. LABEL

The LABEL function key is used to label the nodes, and if the model type is a Markov chain,

it is used to label the connectors. (See fig. 10.) You are first asked whether you want to change

existing labels or enter new labels. In either case, you are prompted for a label by a red X in or

on each graphics primitive in the drawing window. To move the red X from one node to the next

node without making any entries or changes, simply hit <CR>. A model must be saved before

it can be labeled. If you are labeling a fault tree, you are prompted for the dictionary entry

number. The prompt also allows you to enter a ? for help so that you can see the dictionary.

Enter \, \d, or/d to exit labeling, or enter c if you forgot to create a dictionary before entering

labeling. If you are labeling a Markov chain, you are prompted for the state name. Enter the

label on the keyboard, maximum of 13 characters, and press Enter or <CR>. You are then

prompted for the next one. When labeling, you are first asked for all the node labels, then the

connectors. To quit the labeling session before all the labels have been entered, type \, \d, or/d

then <CR>. When selecting change existing, if you do not want to change the red X, press

<CR> to select the next basic event for editing. Basic events must be displayed on the screen

17

,J

IAI

FBOX]

E

MESSAGES GO HERE

QUIT HELP SCALE

t_ SAVE LOAD

DICT COPY VIEW

ERASE RE/_W MOVE

DRAW DEL GRID

Fault tree

or
Markov chain

primitive menu

Figure 10. Selecting LABEL from the menu.

to do labeling. Labeling details for each graphic primitive are found in their respective graphic
primitive description sections.

HARP places the following restrictions on rate parameters, which only affect the Markov
chain input:

1. Only one level of parentheses

2. Only addition and subtraction within parentheses

3. Only addition, subtraction, and multiplication outside parentheses

Greek symbols, new line markers, and subscripts must be entered with an escape code invoked

by the \ key. To enter any Greek symbol, preface the Greek name with a \ and also add a \ suffix.
The way to enter A is

\lambda\

All Greek symbols axe available in lowercase only. The symbols \- within the label signify a new

line. All characters entered following \S and before \U are written as subscripts.

In a Markov chain, two nodes having an identical label are considered to be the same state.

(This condition applies only if there are labels. However, to run the fiface and harpeng programs,

the states must be labeled.)

4.6. SAVE

The SAVE function key allows you to write your model to a disk file. (See fig. 11.) When

prompted for the model name, do not enter an extension. If the model type is a fault tree,

18

,3 C

IAI

)

C E

MESSAGES GO HERE

QUIT HELP SCALE

LABEL "_ LOAD

DICT COPY VIEW

!ERASE R1K_W MOVE

DRAW DEL GRID

Fault tree
or

Markov chain

primitive menu

Figure 11. Selecting SAVE from the menu.

extensions of .TRE and .FTR axe appended. For a fault tree, a *.FTR file is created to be used

by tdrive. It is identical to the *.TRE file unless double circle graphics primitives are used. (See

section 3.2.2 for details on this primitive.) If the type is a Markov chain, the extension .MKV

is appended. Be sure to save a labeled model before quitting a session. Your session will still

continue after saving the model.

4.7. QUIT

The QUIT function key is used to exit the current session. (See fig. 12.) After selecting

QUIT, a prompt appears that gives you a chance to change your selection and continue or to

really quit the session. Be sure to save your model before you quit because it is lost upon exiting.

If you enter Y to really quit, GKS is terminated and your screen returns to normal.

4.8. COPY

The COPY function key allows you to copy portions of your model from one part of the

screen to another. (See fig. 13.) Consider the area to be copied as a rectangle. After selecting

COPY, you are prompted for the lower left corner and the upper right corner of the area to be

copied. Using these two points, a box is drawn around the portion of the model to be copied

and the area within the box is copied to the location specified. Only one drawing area screen

can be copied at a time. However, it can be copied to another screen segment; that is, you can

use the scroll keys to get to the location you want the model copied.

19

IAI

MESSAGES GO HERE

E

HELP SCALE

I..ABIt SAVE LOAD

DICT COPY VIEW

ERASE RI_)RW MOVE

DRAW DEL GRID

Fault tree

or

Markov chain

primitive menu

Figure 12. Selecting QUIT from the menu.

±

IAI

MESSAGES GO HERE

QUIT HELP SCALE

LABEL SAVE LOAD

DICT _ VIEW

ERASE RI_RW MOVE

DRAW DEL GRID

Fault tree

OF

Markov chain

primitive menu

Figure 13. Selecting COPY from the menu.

20

:3

IAI

_f"hO

V-q-q
MESSAGES GO HERE

E

QUIT HELP SCALE

LABEL SAVE LOAD

DICT COPY VIEW

ERASE REDRW MOVE

DRAW + GRID

o

Markov chain menu

Figure 14. Selecting DEL from the menu.

QUIT HELP SCALE

LABEL SAVE LOAD

DICT COPY VIEW

ERASE RH)RW MOVE

DRAW + GRID

O1 1
DIDI

I °xl @
Fault tree menu

4.9. DEL

The DEL function key is used to remove primitives from your model. (See fig. 14.) To abort

a DEL selection prior to selecting a primitive, select REDRW. To delete a primitive from your

model, first select DEL and then select the graphics primitive in the menu.

Both the DEL function key and the graphics primitive function key should be highlighted. If

they are not, you probably did not select the DEL key first. Once the primitive has been chosen,

simply move the cursor into the drawing window and place the cursor within the primitive that

you want to delete, then press the left mouse button. To delete more of the same primitive,

move the cursor to the primitive in the drawing window and press the left mouse button--you do

not need to enable the primitive function key again. If you want to delete a different primitive,

select the graphics primitive from the menu with the mouse (the DELETE function key remains

enabled), then repeat the process in the drawing window. Until you select one of the other

function keys, you can delete as many different primitives in your model as you want. However,

with the exception of the circle and double circles, you cannot delete a node if there are any
connectors entering or leaving it. The connectors must first be removed. If a label is associated

with the node or connector, it is removed. You can delete circles or double circles like any other
primitive; however, you are warned that all connectors will also be deleted.

The deletion of a basic event node using the DEL function key doesn't remove its entry from

the dictionary. No matter how many basic events are deleted, adding another dictionary item

proceeds from the last one entered. This scheme precludes the renumbering of the labels as well

21

asthe dictionaryentrieseachtime a basiceventis deleted.Unuseddictionaryentriesdo not
causeanyproblemswith the program.

4.10. ERASE

The ERASE function key not only erases the model on the screen but also destroys it in the

data structure. (See fig. 15.) Once this function is used, you cannot retrieve your model unless

it was previously saved on disk.

4.11. GRID

If you want a grid in the drawing window screen, use the GRID function key. (See fig. 16.) If

the grid is on, invoking the GRID function key turns the grid off. Regardless of the grid being

visible or not, nodes in the model are drawn to the nearest half-grid location. The grid size is

fixed, and drawing in scaled mode is prohibited.

4.12. MOVE

The MOVE function key allows you to move any node in the model to another location. (See

fig. 17.) You are prompted for the node to move (place the cursor anywhere within the node

and press the left mouse button) and where to move it (specify the the location in the drawing

window with the cursor and press the left mouse button). Any connectors--both in and out of
the node--are altered to reflect the new location of the node as well.

IAI

,3 E

W4-q
MESSAGES GO HERE

QUIT HELP SCALE

LABEL SAVE LOAD

DICT COPY VIEW

RI_RW MOVE

DRAW DEL GRID

Fault tree

o1"
Markov chain

primitive menu

Figure 15. Selecting ERASE from the menu.

4.13. REDRW

To redraw the model on the screen, use the REDRW function key. (See fig. 18.) All nodes,

connectors (arcs, arrows, or lines), and labels are redrawn. This function does not alter the data

22

• - + + + + ÷- _ox _ + ÷-++

--+ +++++_+++

-- + + + +---_-_-k :k__-F_+ +

++++_ ÷+ ÷
--++++- +++÷+÷

-- _ _ _ _ _4 _ _ _4 _--

-- 44 _ _ _4 _ 4 _4 _--

E

MESSAGES GO HERE

QUIT HELP SCALE

LABEL SAVE LOAD

DICT COPY VIEW

ERASE R_)RW MOVE

DRAW DEL +

Fault tree

or

Markov chain

primitive menu

I FBOX

J.

Figure 16. Selecting GRID from the menu.

IAI

MESSAGES GO HERE

QUIT HELP SCALE [

SAVE LOAD

E

DICT COPY VIEW

ERASE _W +

DRAW DEL GRID

Fault tree

OI"

Markov chain

primitive menu

Figure 17. Selecting MOVE from the menu.

23

structure in any way. After an editing session, you may want to redraw your model because parts

of desired lines or symbols can be erased from the screen as other undesired ones are deleted.

4.14. SCALE

The SCALE function key is used to scale the model either bigger or smaller. (See fig. 19.)

You are prompted for a scaling factor that can be any real number greater than 0 and less than

or equal to 3.0. When using numbers greater than 1.0, you may not see anything on the screen

once it is redrawn because you have magnified the model such that it is no longer visible on the

screen. Scale the model again with a smaller value. If your model is currently scaled and you

use the COPY, MOVE, LABEL, DRAW, or DEL functions keys, the scale is changed to 1.0 and

the model is redrawn on the screen. Drawing in a scaled mode is prohibited.

4.15. VIEW

The VIEW function key is used to show the entire model in a small window in the lower

right corner of the drawing area. (See fig. 20.) The model is centered, scaled, and drawn in the

window. The portion of the model currently being displayed in the main drawing area window

is highlighted by a red box. If you have not created any portion of the model in more than one

drawing screen window (i.e., you have not used the SCROLL function keys and then created

more of the model), the VIEW function is not necessary.

,]

IAI

FBOX

MESSAGES GO HERE

E

QUIT HELP SCALE

LABEL SAVE LOAD

DICT COPY VIEW

ERASE R_ MOVE

DRAW DEL GRID

Fault tree
or

Markov chain

primitive menu

Figure 18. Selecting REDRW from the menu.

When VIEW is selected, a prompt appears that gives you the option of viewing the entire

model or viewing dictionary information (component number, component name, and component

failure rate name) of a selected basic event in a fault tree. The dictionary information option is

24

,3

FBOX

E

V-qq
MESSAGES GO HERE

QUIT HELP +

LABEL SAVE LOAD

DICT COPY VIEW

ERASE _W MOVE

DRAW DEL GRID

Fault tree

O1"

Markov chain

primitive menu

Figure 19. Selecting SCALE from the menu.

,]

IAI

V-4q
MESSAGES GO HERE

?_
E3 63

E

QUIT HELP SCALE

LABEL SAVE LOAD

DICT COPY +

ERASE REDRW MOVE

DRAW DEL GRID

Fault tree

or

Markov chain

primitive menu

Figure 20. Selecting VIEW from the menu.

25

selected by entering d <CR> at the prompt. Next, select with the mouse the node of interest.

The dictionary information appears in a highlighted box below the node. Click again to remove
the box. To use this option, the model must have a dictionary file and must be labeled. To view

the entire model, enter m <CR> at the prompt.

26

Chapter 5

Output Files

Once you have saved the output from your graphics session, the information is stored in a

file with the .TRE extension (if the FORM is a fault tree) or .MKV (if the FORM is a Markov

chain). In addition, for fault tree model, *.FTR (see chapter 5) and *.DIC files are created, and

for a Markov chain model, a *.INT file is created. For the following Markov chain, the output

*.MKV file appears as follows:

N i00 200 16 3PROC

A 300 200 0 0 2 18 3*\LAMBDA\

N 300 200 16 2PROC

A I00 200 300 200 2 18 0

A 500 200 0 0 2 18 2*\LAMBDA\

N 500 200 16 F1

A 300 200 500 200 2 18 0

The lines beginning with an "N" represent nodes and those beginning with an "A" designate

arcs, arrows, or lines (connectors). The fields for the nodes are as follows:

N xcoor ycoor type_node node_label

The (xcoor,yeoor) pair represents the location of the node on a 480-by-480 screen (PC version).

Although this coordinate scale is not used by the graphics implementation (it uses a 1.0-by-l.0

representation), the scale is easy to decipher in the file. The node can be a circle if the FORM is a

Markov chain. If the FORM is a fault tree, the node can be a circle, or gate, and gate, m/n gate,

box, double circle, fbox, cold spare gate, functional dependency gate, sequence-enforcing gate,

priority and gate, xor gate, or not gate. The node label can be a maximum of 13 characters in

length. The fields for the connectors are as follows:

A xl yl x2 y2 direc type_connector next_node rate_paramter

A connector can either be an incoming or an outgoing connector. For an outgoing connector,

x2 and y2 are both 0. In this case, xl, yl represents the location of the node at the head of the

connector. If the connector is an incoming one, xl, yl represents the location of the node at the

tail of the connector. In this case, x2, y2 is the same as the node coordinates. This condition

flags it as an incoming connector. The integer direc specifies the direction of the connector. For

arcs, a 1 signifies an upward arc, 2 signifies a downward arc, 4 signifies an arc that curves toward

the right, and an 8 signifies curves toward the left. Arcs that do not connect two nodes on the

horizontal or vertical have direction numbers of 5, 6, 9, and 10. Arrows have direction numbers

27

of 1 for a vertical line, 2 for a horizontal line, 4 for a positive slope line, and 8 for a negative

slope line. Lines in fault trees have a default direction number of 2.

The type_connector can be a clockwise arc, arrow, or counterclockwise arc for a Markov

chain. For a fault tree, the only connector types are lines. The interpretations for the types

of node and types of connector numbers are as follows: circle, 16; or gate, 17; m/n gate, 18;

and gate, 19; xor gate, 24; cold spare gate, 25; not gate, 26; functional dependency gate, 29;

sequence-enforcing gate, 28; priority and gate, 27; box, 21; failure box, 22; double circle, 23;
clockwise arc, 17; arrow, 18, counterclockwise arc, 19; line, 20. As shown in the *.MKV file, the
nodes are all circles and the connectors are all arrows.

In addition, a dictionary file (*.DIC) can be created. It contains the name of each component

in the system, its failure rate, and any coverage information. The program tdrive, which converts
the fault tree to a Markov chain requires the total number of component types in the model

and the symbolic failure rate parameter for each. For this reason, the *.DIC file must exist for
a fault tree model.

When the FORM is a fault tree, you must run the programs tdrive, fiface, and harpeng (in

that order). For Markov chain input, only the programs fiface and harpeng need be run. When
the FORM is a Markov chain, a *.INT file is also output. This file is declared to be SORTED or

UNSORTED and contains the list of transitions in the model and the rate parameter associated

with each transition. SORTED is the declaration only if the states names (node names) are

entered in an increasing integer order (meaning none are symbolic). If inputs are performed in

this manner, you should append the *X to all transitions going to the failure states. The fiface

program normally appends *X when it sees transitions entering a state beginning with an F. For
a fault tree, a *.FTR file is created to be used by tdrive. The file is identical to the *.TRE file

unless double circle graphics primitives are used. (See section 3.2.2 for details on this primitive.)

The programs of the HARP package--tdrive, fiface, and harpeng_limit the size of the

model on the PC under the 16-bit DOS version but not under OS/2 or the 32-bit DOS

version. A maximum of 500 states 1 without truncation (6000 with level three truncation) and

4000 transitions (without truncation) are permitted on the PC. If more states or transitions are

created by the graphics program than can be accepted by the 16-bit version, you will need to

upload the graphics files to your mini or mainframe computer and execute your model using an
unscaled version of HARP (non PC version). The 32-bit DOS version and the OS/2 version do

not have the state limitation, so the entire analysis can be performed on the PC.

NASA Langley Research Center

Hampton, VA 23681-0001

August 8, 1994

1 Based on 512K of memory. More states are possible with more memory. (See vol. 1 of this TP.)

28

Appendix

Hardware and Software Configurations

This appendix is provided as a guide for the proper hardware and software configuration to

execute the Graphics Oriented (GO) program. The Graphical Kernal System (GKS) was selected
because it is the most portable graphics standard currently available. The GKS standard,

however, is not universally conformed to as are other standards. Consequently, some differences
in installation and operation are present. Substantial effort has been expended to minimize

the possible confusion that may result. Each computing platform installation requires some

knowledge of that system for proper installation.

Section A1 addresses IBM-compatible hardware and software requirements. Section A2

describes how to configure your PC to run the graphics program, section A3 describes how

to configure your Sun workstation, and section A4 describes how to configure your VAX
workstation. Section A5 discusses known bugs.

A1. PC Requirements

The GO graphics program was designed using the Graphic Software Systems Graphical Kernal
System (ref. 4) package and has been ported to an IBM-compatible 286, 386, and 486 computing
platforms.

An IBM PC AT compatible with the enhanced graphics adapter (EGA) display was used for
development. However, the video graphics adapter (VGA) display mode is currently supported.

AI.1. Hardware Requirements

Minimum hardware needed to run the program for the PC is as follows:

• 512K of memory

• Two disk drives with 360K capacity

• Graphics display device (EGA or VGA)

• Mouse

To enhance the performance:

• Fixed disk

• 1.2 or 1.4 MB floppy drives

• Math coprocessor

• VGA

A1.2. Software Requirements

To invoke the Markov chain primitive menus, the m parameter must be passed to pcgo.exe.

This action can be done with the batch file gom.bat. Passing the f parameter or no parameter

(default case) invokes the fault tree primitive menus. The file go.bat is used for this purpose.

For program execution, you need DOS version 2.1 or later. All other files are provided.

Program development (not required for execution) requires the following:

29

• Graphics Software Systems Graphical Kernal System Development package (GSS*GKS

Version 2.02). This package includes GSS Computer Graphics Interface (GSS*CGI) and

device drivers.

• Microsoft C Compiler version 5.1

• MS-DOS Linker version 3.2

Reference 5 is an excellent reference on the GKS system.

A2. Configuring the PC

Several files are needed to run (execute) the graphics program. These files are pcgo.exe, sr.z,

sg.z, aries.m, espn.m, care.m, go.bat, and gom.bat. The pcgo.exe file is the actual executable

program, the *.z files are the font files, and the *.m files are the FEHM graphics files. The *.bat

files are required to invoke the GKS drivers and the GO executable. The file go.bat invokes the

fault tree capability, and gom.bat invokes the Markov chain capability. Other support required

files are given in the following listing.

To run the program correctly with GKS, you need the following lines added to your

AUTOEXEC.BAT file. (No changes are required for your CONFIG.SYS file.)

SET CGIPATH = C:\CGI

C :\CGI\DRIVERS. EXE

You need to make a CGI subdirectory that contains all necessary GKS support code:

CGI.CFG

KERNEL.SYS

DRIVERS.EXE

IBMEGA.SYS

MSMOUSE.SYS

GSSCGI.SYS

IBMVGAI2.SYS

META.SYS

FONTIOI.TBL

FONTIO2.TBL

Contains driver spec., device names, & environ, vars.

Contains workstation configuration

GKS driver

Display driver

Mouse driver

GSSCGI driver

VGA driver (optional in lieu of IBMEGA.SYS)

Meta driver for interfacing with I/O devices (optional)

GKS font files

FONT106. TBL

To change devices or drivers, the user needs to edit the CGI.CFG file with a common ASCII

editor. Upgrading from an EGA to a VGA display or adding a hardcopy output capability are

such examples. KERNELOB.SYS can also be edited when workstation parameters change.

To help you configure your PC, the following example CONFIG.SYS and AUTOEXEC.BAT

files are given.

3O

files=20

buffers=15

break on

shell=c:\command.com

CONFIG.SYS file contents and comments

The max. number of files allowed open

The max. number of buffers

Allows ^C to terminate process

OS is on drive c:\

REM Include your normal statements

KEM

REM

REM

AUTOEXEC.BAT

echo off

verify on

set comspec=c:\command.com

Run GSS*GKS Device Driver Management Utility to initialize

the system and to install the Transient Drivers

SET CGIPATH = C:\CGI

C: \CGI\DRIVERS. EXE

REM Include your normal path

path

cls

The following is a list of files included in PC GO. The *.z, *.m, go.bat, and gom.bat files are

needed at run time with pcgo.exe. The file go.bat invokes the GKS drivers for fault tree entry,

and gom.bat is used for Markov chain entry. The other files are used for development. Please

read the read.me file.

adraw.c arclab.c carcs.c cdisp.c gssgo.c

gssinit.c cmd_prim.c coorarc.c copygr.c dict.c

drwprims.c video.c fhmfils.c filein.c fileout.c

formats.c gendrw.c glcent.c greek.c redraw.c

help.c label.c matrix.c mouse.c movepl.c

petri.c snap.c space.c str.c trans.c

upkeep.c viewport.c wrlab.c aries.m espn.m

stiff.m sg.z sr.z defvar dos.h

defs.h devices.h fonts.h gdefines.h memngt.h

menu.h shapes.h typedef.h vars.h vec.h

linkit.bat Infil makefile makeit.bat go.bat

gom.bat pcgo.exe read.me list

31

A3. Configuring the SUN Workstation

The HARP graphics program was designed to work with Sun GKS 4.1 under OpenWindows.

To execute the HARP graphics program, perform the following steps:

• Type/usr/openwin/bin/openwin at the prompt to place yourself in the openwin environment

• The setenv GKSHOME path of the GKS library files and OPENWINHOME = usr/openwin

must be in your .cshrc file. For example, setenv GKSHOME/usr/gks4.1

• Make sure your Sun workstation has the following libraries:

Y,cc -Bstatic -g -I$GKSHOME/include/gks -I$0PENWINHOME/include foo.c -o foo

-LSOPENWINHOME/Iib -L$GKSHOME/Iib -igks -ixview -lolgx -IXll -im

(Note: ,,_g,, is required only for dbxtool, the source code debugging tool.)

• The GKS librariesare supplied with the executable and source files.

• The following files must be found in a directory:

adraw.c arclab.c aries.m carcs.c cmd_prim.c

coorarc.c copygr.c defs.h defvar dev.h

dict.c drwprims.c espn.m fhmfils.c filein.c

fileout.c formats.c gendrw.c glcent.c gssgo.c

gssinit.c help.c label.c matrix.c memngt.h

menu.h mouse.c movepl.c node_defs.h petri.c

place_label.c redraw.c shapes.h space.c stiff.m

str.c trans.c upkeep.c vars.h viewport.c

wrlab.c read.me list

• In addition to the previous files, Makefile is needed to compile and link the HARP programs.

• To compile and link the HARP programs, type make.

• After typing make, an executable file named go should appear along with the object modules
for the source codes.

A4. Configuring the VAX Workstation

The HARP graphics program was designed to work with DEC GKS version 4.0 with

the C language binding and VMS 4.7 or higher. It has successfully been tested using the

VAXstation II windowing software version 3.1 or higher and DEC windows version 1.0. If you

are using DEC Windows, be sure to define logical names for the devices.

Example: define gksSwstype 211

define gks$conid wsa0

These lines can be included in your login.com file.To execute the HARP graphics program,

perform the following steps:

• Set up foreign command $go := $full path name harp.exe in your login.com file. For example,

$go := $vaxl$dub0: Ijane.harp]harp.exe

32

• Thefollowingfilesmustbe foundin a directory:

adraw, c arclab, c aries, m carcs, c cmd_prim, c

coorarc, c copygr, c defs .h defvar dev. h

dict. c drwprims, c espn .m fhmfils, c filein, c

fileout, c formats, c gendrw, c glcent, c gssgo, c

gssinit, c help. c label, c matrix, c memngt, h

menu.h mouse, c movepl, c node_defs, h petri, c

place_label, c redraw, c shapes.h space, c stiff.m

str. c trans, c upkeep, c vars. h vec. h

viewport.c where_gks.h wrlab.c

• In addition to the previous files, compile_harp.com and link_harp.com procedure files have

been included. To execute these procedures, type @compile_harp followed by @link_harp.

• After executing these two procedure files, an executable file entitled harp.exe should appear.

To execute harp type go.

During certain portions of the interactive session, a string input window will appear on

the screen to request input. If this window should ever impair viewing important graphic

information, click the left button of the mouse on the upper right corner of the string window

to display a menu. This menu lets you shrink the window to an icon or push the window behind

the graphics display. To continue, bring back the string window for response.

A5. Known Bugs and Suggested Improvements

Although all versions of the GO program were translations of the original PC version,

the versions differ as a result of differences in their GKS implementations. Even though the

developers made every attempt to maintain a common source code for all computing platforms,

the different implementations precluded that aim (ref. 1). Consequently, each computing

platform version of GO has its unique bugs. In delineating the known bugs, the GO version is

identified, when possible. For the Sun workstation, the priority and gate accepts more than two

inputs.

33

References

1. Bavuso, Salvatore J.; Koppen, Sandra V.; and Haley, Pamela J.: Graphical Workstation Capability for Reliability

Modeling. NASA TM-4317, 1992.

2. Geist, Robert; Trivedi, Kishor; Dugan, Joanne Bechta; and Smotherman, Mark: Design of the Hybrid

Automated Reliability Predictor. Proceedings of the IEEE//AIAA 5th Digital Avionics Systems Con]erence, 1983,

pp. 16.5.1-16.5.8.

3. Bavuso, Salvatore J.; and Dugan, Joanne B.: HiRel--Reliability/Availability Integrated Workstation Tool.

Proceedings of the Annual Reliability and Maintainability Symposium, IEEE, Jan. 1992, pp. 491-500.

4. McKay, Lucia: GKS Primer. Nova Graphics International Corp., 1984.

5. Sproull, Robert F.; Sutherland, W. R.; and Ullner, Michael K.: Device-Independent Graphics. McGraw-Hill Book

Co., 1985.

34

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, OC 20503

1. AGENCY USE ONLY(Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

November 1994 Technical Paper

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

HiReh Hybrid Automated Reliability Predictor (HARP)

Integrated Reliability Tool System (Version 7.0) WU 505-66-21-02

HARP Gralghics Oriented (GO_ Input User's Guide

6. AUTHOR(S)

Salvatore J. Bavuso, Elizabeth Rothmann, Nitin Mittal,

and Sandra Howell Koppen

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research Center

Hampton, VA 23681-0001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Washington, DC 20546-0001

8. PERFORMING ORGANIZATION

REPORT NUMBER

L-16553C

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA TP-3452, Vol. 3

11. SUPPLEMENTARY NOTES

Bavuso: Langley Research Center, Hampton, VA; Rothmann and Mittah

Koppen: Lockheed Engineering & Sciences Company, Hampton, VA.

Duke University, Durham, NC;

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited

Subject Category 61

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The Hybrid Automated Reliability Predictor (HARP) integrated Reliability (HiRel) tool system for

reliability/availability prediction offers a toolbox of integrated reliability/availability programs that can be
used to customize the user's application in a workstation or nonworkstation environment. HiRel consists of

interactive graphical input/output programs and four reliability/availability modeling engines that provide
analytical and simulative solutions to a wide host of highly reliable fault-tolerant system architectures and is

also applicable to electronic systems in general. The tool system was designed at the outset to be compatible
with most computing platforms and operating systems, and some programs have been beta tested within the

aerospace community for over 8 years. This document is a user's guide for the HiRel graphical preprocessor

Graphics Oriented (GO) program. GO is a graphical user interface for the HARP engine that enables the

drawing of reliability/availability models on a monitor. A mouse is used to select fault tree gates or Markov

graphical symbols from a menu for drawing.

14. SUBJECT TERMS

Reliability; Availability; Fault tree; Markov chain; Coverage; Faults; Errors;

Fault tolerant; Graphical user interface (GUI)

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION

OF REPORT OF THIS PAGE

Unclassified Unclassified

NSN 7540-01-280-5500

19. SECURITY CLASSIFICATION

OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

37

16. PRICE CODE

A03

20. LIMITATION

OF ABSTRACT

Standard Form 2g8(Rev. 2-89)
Prescribed by ANSI Std Z39-18
298-102

